

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (Computer/IT)

(To be Proposed For: Academic Year 2020-21)

Subject Code: CT803C-N	Subject Title: Information Retrieval
Pre-requisite	Linear Algebra, probability, data structure and algorithms

Teaching Scheme (Credits and Hours)

Teaching scheme				Evaluation Scheme						
L	Т	P	Total	Total Credit	Theory		Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	5	3	70	30	20	30	150

Learning Objectives:

- Learn to write code for text indexing and retrieval.
- Learn to evaluate information retrieval systems
- Learn to analyse textual and semi-structured data sets
- Learn to evaluate information retrieval systems
- Learn about text similarity measure
- Neural Information Retrieval
- Understanding about search engine

Outline of the Course:

Sr. No	Title of the Unit	Minimum Hours
1	Overview of text retrieval systems	6
2	Retrieval models and implementation: Vector Space Models	9
3	Probabilistic models; statistical language models	10
4	Query expansion and feedback	7
5	Neural Information Retrieval	20
6	Web search basics, crawling, indexes, Link analysis	7
7	IR applications	5

Total hours (Theory): 64
Total hours (Lab): 32

Total hours: 96

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (Computer/IT)

(To be Proposed For: Academic Year 2020-21)

Detailed Syllabus:

Sr. No	Topic	Lecture Hours	Weight age(%)
1	Overview of text retrieval systems		
	Boolean retrieval		
	 The term vocabulary and postings lists 	6	8
	 Dictionaries and tolerant retrieval 		
	Index construction and compression		
2	Retrieval models and implementation: Vector Space		
	Models		
	Vector Space Model	9	15
	TF-IDF Weight		
	Evaluation in information retrieval		
3	Probabilistic models; statistical language models		
	Okapi/BM25;		
	Language models	10	15
	KL-divergence		
	Smoothing		
	Query expansion and feedback		
	Relevance feedback		
	pseudo relevance feedback	7	12
	Query Reformulation		
5	Neural Information Retrieval		
	 Neural networks fundamentals 		
	Learning to rank		
	 Embeddings 		
	Deep neural networks	20	33
	 Shallow neural methods for ranking 		
	 Deep neural methods for rankings 		
	Deep neural methods for retrieval		
6	Web search basics, crawling, indexes, Link analysis		
	Web Characteristic		
	Crawling		
	Web As a graph	7	12
	Page Rank		

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (Computer/IT)

(To be Proposed For: Academic Year 2020-21)

7	IR applications		
	Information extraction		
	Question answering		
	Text summarization	5	5
	Total	64	100

Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Learning Outcome:

- Text representation using vector
- Performance evolution metric for IR
- Understand search Engine functionality
- Get introduced with neural Information Retrieval

Text Book:

- Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008. http://nlp.stanford.edu/IR-book/information-retrieval-book.html
- Bhaskar Mitra and Nick Craswell, An Introduction to Neural Information Retrieval, Now publishers Inc.
- ChengXiang Zhai, Statistical Language Models for Information Retrieval (Synthesis Lectures Series on Human Language Technologies), Morgan & Claypool Publishers, 2008.
- http://www.morganclaypool.com/doi/abs/10.2200/S00158ED1V01Y200811HLT001

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (Computer/IT)

(To be Proposed For: Academic Year 2020-21)

List of Experiments:

Sr. No	Name of Experiment
1	Text Representation by various weighting scheme
2	Introduction to Lucerne/terrier/Indri and Sample index creation in Java/Python.
3	Study various IR measure precision, Recall, F1-score, MAP, nDCG
4	Implement vector space model in R or Python
5	Implement Okapi BM25 model in R or python
6	Implement N-gram language model with different smoothing techniques
7	Implement LSA in R or Python
8	Implement Learning to Rank for text Retrieval
9	Implement deep neural network LSTM/CNN in R/Python
10	Implement rankings using deep neural methods
11	Various track at TREC 2020 conference (students will be encouraged to participate in such track)
	Deep Learning Track
	 Incident Streams Track Complex Answer Retrieval Track